
UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group

computer graphics & visualizationcomputer graphics & visualization

UberFlow: A GPU-BasedUberFlow: A GPU-Based
Particle EngineParticle Engine

Peter KipferPeter Kipfer
Technische UniversitätTechnische Universität

MünchenMünchen

Rüdiger Westermann
Technische Universität

München

Mark Segal
ATI Research

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Motivation
Want to create, modify and render large
geometric models

Important
example:

Particle system

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Motivation
Major bottleneck

- Transfer of geometry to graphics card

Process on GPU if transfer is to be avoided

- Need to avoid intermediate read-back also

Requires dedicated GPU implementations

Perform geometry handling for rendering on the GPU

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Bus transfer
- Send geometry for every frame

- because simulation or visualization is time-dependent

- the user changed some parameter

- Render performance: 12.6 mega points/sec

- Make the geometry reside on the GPU

- need to create/manipulate/remove vertices without
read-back

- Render performance: 114.5 mega points/sec

ATI Radeon 9800Pro, AGP 8x, GL_POINTS with individual color

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Motivation
Previous work
- GPU used for large variety of applications

- local / global illumination [Purcell2003]

- volume rendering [Kniss2002]

- image-based rendering [Li2003]

- numerical simulation [Krüger2003]

- GPU can outperform CPU for both compute-
bound and memory-bound applications

Geometry handling on GPU potentially faster

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

GPU Geometry Processing
Simple copy-existing-code-to-shader
solutions will not be efficient

Need to re-invent algorithms, because

- different processing model (stream)

- different key features (memory bandwidth)

- different instruction set (no binary ops)

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

GPU Geometry Processing

Need shader access to vertex data

- OpenGL SuperBuffer
- Memory access in fragment shader

- Directly attach to compliant OpenGL object

- VertexShader 3.0
- Memory access in vertex shader

- Use as displacement map

- Both offer similar functionality

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

OpenGL SuperBuffer
Separate semantic of data from it’s storage
- Allocate buffer with a specified size and data layout

- Create OpenGL objects

- Colors: texture, color array, render target

- Vectors: vertex array, texcoord array

- If data layout is compatible with semantic, the buffer can
be attached to / detached from the object

- Zero-copy operation in GPU memory

- Render-to-vertex array possible by using floating-point
textures and render targets

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

OpenGL SuperBuffer
- Example: floating point array that can be read

and written (not at the same time)

OpenGL
texture object

glGenTextures()

OpenGL
render target
(offscreen)

glDrawBuffer()

OpenGL
memory object

RGBA_FLOAT32_ATI

change of attachment
possible outside
rendering activity

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

GPU Particle Engine

cool demo

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Overview

GPU particle engine features

- Particle advection
- Motion according to external forces and 3D force field

- Sorting
- Depth-test and transparent rendering

- Spatial relations for collision detection

- Rendering
- Individually colored points

- Point sprites

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Particle Advection
Simple two-pass method using two vertex
arrays in double-buffer mode
- Render quad covering entire buffer

- Apply forces in fragment shader

screenbuffer 0

buffer 1

bind to
texture

bind to
render target

bind to
vertex array

render
target

pass 1: integrate
pass 2: render

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Sorting
Required for correct transparency and
collision detection
- Bitonic merge sort (sorting network) [Batcher1968]

- Sorting n items needs (log n) stages

- Overall number of passes ½ (log²n + log n)

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Sorting a 2D field

- Merge rows to get a completely sorted field

- Implement in fragment shader [Purcell2003]

- A lot of arithmetic necessary

- Binary operations not available in shader

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Fast sorting

Make use of all GPU resources

- Calculate constant and linear varying values in
vertex shader and let raster engine interpolate

- Render quad size according to compare distance

- Modify compare operation and distance by
multiplying with interpolated value

row sort column sort

+1

+1

-1

-1

+1 +1

-1 -1

<
<

≥
≥

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Fast sorting

- Perform mass operations (texture fetches) in
fragment shader

t0 = fragment position
t1 = parameters from vertex shader
(interpolated)

OP1 = TEX[t0]
sign = (t1.x < 0) ? -1 : 1
OP2 = TEX[t0.x + sign*dx, t0.y]
return (OP1 * t1.y < OP2 * t1.y) ? OP1 : OP2

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Fast sorting

- Final optimization: sort [index, key] pairs
- pack 2 pairs into one fragment

- lowest sorting pass runs internal in fragment shader

- Generate keys according to distance to viewer or
use cell identifier of space partitioning scheme

initial pass third passcollapse into single pass collapse into single pass

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Fast sorting

- Same approach for column sort, just rotate the
quads

- Benefits for full sort of n items
- 2*log(n) less passes (because of collapse and packing)

- n/2 fragments processed each pass (because of
packing)

- workload balanced between vertex and fragment units
(because of rendering quads and interpolation)

Speedup factor of 10 compared to previous solutions

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Fast sorting
- Performance: full sort

4835.14.851024²

4896.424.4512²

4337.2110.0256²

1773.9238.0128²

1932.01.941024²

1862.49.3512²

1712.843.6256²

1302.8175.0128²

mega frag/secmega items/secsorts/sec n

ATI Radeon 9800Pro

ATI Radeon X800 XT

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Particle – Scene Collision

Additional buffers for state-full particles

- Store velocity per particle (Euler integration)

- Keep last two positions (Verlet integration)

- Simple: Collision with height-field stored as 2D
texture
- RGB = [x,y,z] surface normal

- A = [w] height

- Compute reflection vector

- Force particle to field height

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Particle – Particle Collision

Essential for natural behavior

- Full search is O(n²), not practicable

- Approximate solution by considering only
neighbors

- Sort particles into
spatial structure
- Staggered grid misses

only few combinations

single gridsingle grid

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Particle – Particle Collision

Essential for natural behavior

- Full search is O(n²), not practicable

- Approximate solution by considering only
neighbors

- Sort particles into
spatial structure
- Staggered grid misses

only few combinations

staggered gridstaggered grid

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

Particle – Particle Collision
- Check m neighbors to the left/right

- Collision resolution with first collider (time
sequential)

- Only if velocity is not excessively larger than
integration step size

solve quadratic equation on GPU

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

GPU Particle Engine

more cool demos

UberFlow: A GPU-Based Particle EngineUberFlow: A GPU-Based Particle Engine
Dr. P. Kipfer – Computer Graphics and Visualization GroupDr. P. Kipfer – Computer Graphics and Visualization Group computer graphics & visualizationcomputer graphics & visualization

GPU Particle Engine

Acknowledgements

- ATI Research for providing hardware

- Jens Krüger for insight on shader programming

http://wwwcg.in.tum.de/GPU

